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Problem 1 (50%)

Consider the following nonlinear regression for the binary outcome yi ∈ {0, 1}:

yi = g(xi, β) + ui, (1)

E[yi | xi] = g(xi, β) =
exp{x′iβ}

1 + exp{x′iβ}
, (2)

for i = 1, . . . , N , where xi is a vector of observed characteristics, and β is the

corresponding vector of regression coefficients.

Question 1.1: Within what range does this model restrict E[yi | xi] to lie?

Justify your answer.

Suggested answer

The conditional mean E[yi | xi] of the dependent variable lies within (0, 1)

(both bounds excluded): For any given real vector xi, the product x′iβ

takes values on (−∞,+∞) since β is not restricted. This implies that

exp{x′iβ} lies between (0,+∞). Therefore, the ratio in Eq. (2) tends to 0

when x′iβ → −∞, and to 1 when x′iβ → +∞.

Question 1.2: Express the optimization problem that can be used to obtain

the nonlinear least squares (NLS) estimator of β.

Suggested answer

The optimization problem can be expressed as:

β̂NLS = arg min
β
QN(β), with QN(β) =

1

2

N∑
i=1

(yi − g(xi, β))2.

(Note that the factor 1/2 is only used to simplify the subsequent deriva-

tions.)

Question 1.3: Show that the first-order conditions for the NLS estimator of
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β can be expressed as

N∑
i=1

wi(yi − g(xi, β))xi = 0, with wi =
exp{x′iβ}

(1 + exp{x′iβ})2
. (3)

Suggested answer

First-order conditions:

∂QN(β)

∂β
= 0 ⇒ ∂

∂β

(
1

2

N∑
i=1

(yi − g(xi, β))2

)
= 0,

⇒
N∑
i=1

∂g(xi, β)

∂β
(yi − g(xi, β)) = 0.

Given the expression of g(xi, β) in Eq. (2), the corresponding first deriva-

tive is:

∂g(xi, β)

∂β
=

exp{x′iβ}xi(1 + exp{x′iβ})− exp{2x′iβ}xi
(1 + exp{x′iβ})2

,

=
exp{x′iβ}

(1 + exp{x′iβ})2
xi,

which provides the weight wi in Eq. (3).

Question 1.4: Which condition is required for consistency of the NSL esti-

mator of β? Is this condition fulfilled in this model? Justify your answer

analytically.

Suggested answer

Using the first-order conditions derived above, it comes that consistency

will be achieved if

E[wi(yi − g(xi, β0))xi] = 0,

where β0 denotes the true value of β.
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This holds if E[ui | xi] = 0. Indeed, since ui = yi − g(xi, β0), we get

E[wi(yi − g(xi, β0))xi] = E[wiuixi] = E[E[wiuixi | xi]] ,

= E[wixiE[ui | xi]] ,

= 0,

using the law of iterated expectations. Therefore, the conditional mean of

the error term needs to be equal to 0 for consistency. This holds if the

conditional mean of the dependent variable is correctly specified. In this

model:

E[ui | xi] = E[yi − g(xi, β) | xi] , = E[yi | xi]− g(xi, β) = 0

because of the assumption in Eq. (2).

Alternatively, the zero conditional mean of the error term can be shown by

realizing that each error term only has two possible values in this model:

ui =

1− g(xi, β) if yi = 1,

−g(xi, β) if yi = 0.

Therefore,

E[ui | xi] = (1− g(xi, β)) Pr(yi = 1 | xi)− g(xi, β)) Pr(yi = 0 | xi) ,

= (1− g(xi, β))g(xi, β)− g(xi, β))(1− g(xi, β)),

= 0,

because Pr(yi = 1 | xi) = E[yi | xi] = g(xi, β).

Question 1.5: Show that V[yi | xi] = g(xi, β)(1− g(xi, β)). How can you use

this result to improve on the NLS estimation of β? Describe briefly the

alternative approach you suggest.

Suggested answer
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Conditional variance:

V[yi | xi] = E
[
y2i | xi

]
− E[yi | xi]2 ,

= E[yi | xi]− E[yi | xi]2 ,

= g(xi, β)− g(xi, β)2,

= g(xi, β)(1− g(xi, β)),

using the fact that E[y2i | xi] = E[yi | xi] because yi is binary. This condi-

tional variance is the variance of the corresponding Bernoulli distribution,

as we are dealing with a binary dependent variable.

The previous expression of the conditional variance of the dependent vari-

able implies that the error terms are heteroskedastic, which affects the ef-

ficiency of the basic NLS estimator. To improve efficiency, the Generalized

Nonlinear Least Squares (GNLS) estimator controls for this heteroskedas-

ticity:

β̂GNLS = arg min
β

1

2

N∑
i=1

1

σ2
0i

(yi − g(xi, β))2.

where σ2
0i ≡ V[ui | xi]|β0 = g(xi, β0)(1 − g(xi, β0)), where β0 is the true

value of the parameter β.

This estimator, however, cannot be obtained directly, as it depends on the

unknown true parameter β0. A feasible version is the Feasible Generalized

Nonlinear Least Squares (FGNLS) estimator:

β̂FGNLS = arg min
β

1

2

N∑
i=1

(yi − g(xi, β))2

g(xi, β̂)(1− g(xi, β̂))
,

where β̂ is a consistent estimator of β that allows to consistently estimate

the variance of the error term.

The FGNLS estimator can be obtained in a multi-step procedure: First run

NLS to obtain β̂NLS, a consistent estimator of β. Then, use this estimator

in a second step to compute the corresponding variance of the errors.

Finally, in a third step use this estimator of the variance of the error terms

to solve the optimization problem above providing β̂FGNLS.
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Question 1.6: Which alternative econometric model, assuming the same con-

ditional expectation of the outcome as in Eq. (2), could you use to esti-

mate β with maximum likelihood estimation (MLE)? Discuss briefly the

differences between this MLE approach and the NLS approach.

Suggested answer

The expression of the conditional mean of the dependent variable corre-

sponds to the logit model:

Pr(yi = 1 | xi) = E[yi | xi] =
exp{x′iβ}

1 + exp{x′iβ}
,

with likelihood function, asuming independence of the observation i =

1, . . . , N :

LN(β) =
N∏
i=1

Pr(yi = 0 | xi)1−yi Pr(yi = 1 | xi)yi ,

=
N∏
i=1

(
1

1 + exp{x′iβ}

)1−yi ( exp{x′iβ}
1 + exp{x′iβ}

)yi
This alternative model can be estimated with maximum likelihood esti-

mation:

β̂ML = arg max
β

lnLN(β).

Both MLE and NLS provide consistent estimators, but not with the same

efficiency. The ML estimator will be more efficient than NLS, but it re-

quires a correct specification of the data generating process. This may be

a strong requirement in practice. NLS is more flexible because it relies

on weaker distributional assumption. Only the conditional mean of the

dependent variable needs to be well specified to apply NLS. The feasi-

ble generalized version of NLS is more efficient than NLS, but requires to

known the specification of the conditional variance of the error term (if

only a guess can be made on the expression of the variance, then weighted

nonlinear least squares (WNLS) can be used instead). Therefore, in prac-

tice there is a trade-off between the distribution assumptions the analyst

is willing to make and the efficiency of the resulting estimator.
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Problem 2 (30%)

Consider a stock with price pt at each time period t = 0, . . . , T . You are

interested in modeling the price fluctuations of this stock using the binary

indicator yt = 1{pt − pt−1 > 0}, where 1{·} denotes the indicator function

that is equal to 1 if the corresponding condition is fulfilled, to 0 otherwise.

For simplicity, assume that yt is independent across time periods.

The goal of the analysis is to make inference on the parameter θ ≡ Pr(yt = 1),

for t = 1, . . . , T .

Question 2.1: Propose a model for this analysis and derive the corresponding

likelihood function. Specify a prior distribution on θ that is a natural

conjugate prior and derive the corresponding posterior distribution.

[Hint: You may use a distribution from Table 2.1, or a different one.]

Suggested answer

Each random variable yt can be assumed to follow a Bernoulli distribution

with parameter 0 ≤ θ ≤ 1. Given the independence assumed across time

periods, the corresponding likelihood function can be expressed as:

p(y | θ) ≡ LT (θ) =
T∏
t=1

θyt(1− θ)(1−yt) = θS(1− θ)T−S.

with y = (y1, . . . , yT )′ and S =
∑T

t=1 yt. This likelihood function has the

same form as the kernel of the Beta distribution for θ:

θ ∼ Beta(a0, b0) , p(θ) ∝ θa0−1(1− θ)b0−1.

Therefore, the Beta distribution is a natural conjugate prior in this model,

due to the fact that the corresponding posterior distribution is also a Beta
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distribution. This can be verified by applying Bayes’ theorem:

p(θ | y) ∝ p(y | θ)p(θ),

∝ θS(1− θ)T−Sθa0−1(1− θ)b0−1,

∝ θa0+S−1(1− θ)b0+T−S−1,

which corresponds to the kernel of the following Beta distribution:

θ | y ∼ Beta(a0 + S, b0 + T − S) .

Question 2.2: How would you choose the values of the prior parameters to

obtain a flat prior? Show that with such a flat prior, the mean of the

posterior distribution is asymptotically identical to the value of the max-

imum likelihood estimator.

Suggested answer

A flat prior puts the same weight on all possible values of the parameter,

i.e., p(θ) ∝ 1. Since in this model 0 ≤ θ ≤ 1, a flat prior corresponds to

a uniform prior on [0, 1], which can be obtained by specifying a0 = 1 and

b0 = 1:

p(θ | a0 = 1, b0 = 1) ∝ θ(1−1)(1− θ)(1−1) ∝ 1.

Using this flat prior and the expression of the posterior distribution derived

in the previous question, the posterior mean of θ is (see Table 2.1):

E[θ | y] =
a0 + S

a0 + b0 + T
=
S + 1

T + 2

T→∞−→ S

T
,

where S/T is the sample average of the binary variable yt.
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Given that the maximum likelihood estimator of θ is:

θ̂ML = arg max
θ

lnLT (θ) = arg max
θ

(S ln(θ) + (T − S) ln(1− θ)) ,

FOC:
∂ lnLT (θ)

∂θ
= 0,

⇒ S

θ
− T − S

1− θ
= 0,

⇒ θ̂ML =
S

T
.

we can conclude that the posterior mean of θ coincides with the maximum

likelihood estimator asymptotically.

Table 2.1: Some probability distributions.

Distribution Density f(θ | a, b) Mean

Uniform
1

b− a
a+ b

2

Beta
θa−1(1− θ)b−1

B(a, b)

a

a+ b

Gamma
1

Γ(a)ba
θa−1 exp

{
−θ
b

}
ab

Inverse-Gamma
ba

Γ(a)
θ−a−1 exp

{
− b
θ

}
b

a− 1
(for a > 1)
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Problem 3 (20%)

You would like to compute the cumulative distribution function (CDF) of the

standard normal distribution using an alternative to the normcdf() function

provided in MATLAB.

One of your colleagues gives you the following piece of code, where you need

to select one option for the two ingredients A and B, respectively:

1 function [cdf] = cdf normal(x,M)

2

3 rng(1);

4 pdf normal = @(t) exp(-(t.ˆ2)/2)/sqrt(2*pi);

5

6 % A: first ingredient

7 z = rand(M,1); % A1

8 z = randn(M,1); % A2

9 z = x + randn(M,1); % A3

10

11 % B: second ingredient

12 w = z.*x; % B1

13 w = z.*pdf normal(x); % B2

14 w = z < x; % B3

15 w = pdf normal(z) < x; % B4

16

17 % result

18 cdf = mean(w);

19

20 end

Question 3.1: State your choice for the two ingredients A and B (for example,

“A1 and B1”), and provide the corresponding mathematical expression

of the formula used in this function.

Suggested answer

The ingredients A2 and B3 allow to approximate the CDF of the standard

Page 10 of 12



normal distribution (denoted Φ(·)) based on the following expression:

Φ(x) =

∫ x

−∞
φ(z)dz =

∫ +∞

−∞
1{z ≤ x}φ(z)dz ≈ 1

M

M∑
m=1

1
{
z(m) ≤ x

}
where z(m) ∼ N (0, 1) for m = 1, . . . ,M , and where φ(·) denotes the prob-

ability distribution function (PDF) of the standard normal distribution.

Question 3.2: Describe precisely the theory behind this function. In partic-

ular, explain the role of the constant M and how it should be specified.

Suggested answer

This function relies on Monte Carlo integration to approximate the CDF of

the standard normal distribution. It uses the fact that Φ(x) = E[1{X ≤ x}],
where X ∼ N (0, 1). Using the law of large numbers, this expectation can

be approximated by the following sample average

1

M

M∑
m=1

1
{
z(m) ≤ x

} p−→ E[1{X ≤ x}] ,

which converges in probability to the expectation on the right when M →
+∞, where z(1), . . . , z(M) is a sequence of independent random draws from

the standard normal distribution.

The number of random draws M determines the precision of the approxi-

mation. The larger the number of draws, the better the approximation. In

practice, however, only a finite number of draws can be used. It is there-

fore important to investigate the impact of M on the results. It should

be large enough to provide a stable approximation, but not too large to

prevent computational burden.

[Hint: see next page...]
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[Hint: For any random variable Z with probability distribution function

f(·) and cumulative distribution function F (·), remember that

E[Z] =

∫
zf(z)dz and F (z) =

∫ z

−∞
f(t)dt = E[1{Z ≤ z}],

where 1{·} is the indicator that is equal to 1 if the corresponding condi-

tion is fulfilled, to 0 otherwise.]
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